Search results

Search for "biomedical application" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • spreading due to contaminations of surfaces leading to biofilm formation [101]. In contrast, for biomaterials and their biomedical application (such as implants and wound dressings), cell-friendly and adhesive properties are necessary [66]. Ideally, bioselective materials that promote host cell adhesion
PDF
Album
Review
Published 08 Sep 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • tumor removal with no evident recurrence, along with relatively high therapeutic biosafety extending their future biomedical application [115]. Recently, PTT and PDT methods that target mitochondria have been developed as new treatment techniques for enhancing therapeutic efficacy. Since mitochondria
PDF
Album
Review
Published 14 Feb 2022

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • , triangular plates, hexagonal plates, pyramids, and cubes depending on the synthesis method used, as depicted in Figure 1. Moreover, they all have specific characteristics, both from the physicochemical and biomedical application points of view [33]. The unique chemical and physical properties of AgNPs are
PDF
Album
Supp Info
Review
Published 14 May 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • easily manufactured and biocompatible. Also, there are physiologically well tolerated as iron is an essential nutrient for almost all life forms [6]. Iron oxide nanoparticles are the only one FDA-approved magnetic nanoparticles for biomedical application (Resovist). Efficient cellular internalization of
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2020

Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability

  • Mykola Borzenkov,
  • Anni Määttänen,
  • Petri Ihalainen,
  • Maddalena Collini,
  • Elisa Cabrini,
  • Giacomo Dacarro,
  • Piersandro Pallavicini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2016, 7, 1480–1485, doi:10.3762/bjnano.7.140

Graphical Abstract
  • effect; Introduction Due to advantages over other patterning techniques, inkjet printing technology has met important challenges to pattern a broad range of functional materials with promising biomedical application [1][2][3][4][5][6][7]. Inks based on metal nanoparticles are widely used in inkjet
PDF
Album
Supp Info
Letter
Published 19 Oct 2016

Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals

  • Johannes Ostermann,
  • Christian Schmidtke,
  • Christopher Wolter,
  • Jan-Philip Merkl,
  • Hauke Kloust and
  • Horst Weller

Beilstein J. Nanotechnol. 2015, 6, 232–242, doi:10.3762/bjnano.6.22

Graphical Abstract
  • Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia 10.3762/bjnano.6.22 Abstract In this short review, the main challenges in the use of hydrophobic nanoparticles in biomedical
  • application are addressed. It is shown how to overcome the different issues by the use of a polymeric encapsulation system, based on an amphiphilic polyisoprene-block-poly(ethylene glycol) diblock copolymer. On the basis of this simple molecule, the development of a versatile and powerful phase transfer
  • termination reactions, which gives the opportunity to easily functionalize the polymer chains using specific terminating reagents [11][12]. In this short review we summarize our experiences with amphiphilic diblock copolymers for the encapsulation of inorganic nanoparticles for their use in biomedical
PDF
Album
Supp Info
Review
Published 21 Jan 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon
PDF
Album
Review
Published 05 Dec 2014

Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

  • Dagmar A. Kuhn,
  • Dimitri Vanhecke,
  • Benjamin Michen,
  • Fabian Blank,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1625–1636, doi:10.3762/bjnano.5.174

Graphical Abstract
  • and mβcd-treated A549 cells. The 1 µm particles were not observed inside the epithelial cells under any condition (Figure 5). Discussion For any future biomedical application of engineered NPs, it is mandatory to fundamentally understand their interaction with living systems. The cellular uptake
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • biomedical application as contrast agents or drug delivery devices [9][10]. From our experience in pharmaceutical and medical history, we have learned that oral delivery is the preferred administration route for patients [9][10]. Similar to the lung, also the GI tract is a major biobarrier target organ for
PDF
Album
Full Research Paper
Published 27 Aug 2014

Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development

  • Ulrike Taylor,
  • Wiebke Garrels,
  • Annette Barchanski,
  • Svea Peterson,
  • Laszlo Sajti,
  • Andrea Lucas-Hahn,
  • Lisa Gamrad,
  • Ulrich Baulain,
  • Sabine Klein,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2014, 5, 677–688, doi:10.3762/bjnano.5.80

Graphical Abstract
  • nanoparticles, exposure to comparable Ag+-ion concentrations resulted in an immediate arrest of embryo development. In conclusion, the results do not indicate any detrimental effect of colloidal gold or silver nanoparticles on the development of murine embryos. Keywords: biomedical application; confocal
PDF
Album
Full Research Paper
Published 21 May 2014
Other Beilstein-Institut Open Science Activities